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Abstract-Nakajima and Tanaka showed that the algebraic eigenvalue problem occurring in 
the discrete ordinate and matrix operator methods can be reduced to finding eigenvalues and 
eigenvectors of the product of two symmetric matrices, one of which is positive definite. Here, 
we show that the Cholesky decomposition of this positive definite matrix can be used to 
convert the eigenvalue problem into one involving a symmetric matrix. The Cholesky 
decomposition is extremely stable and is expected to improve the speed of the 
eigenvalue/eigenvector computation. After a careful comparison of the Nakajima and Tanaka 
procedure, our new Cholesky decomposition method and the original procedure suggested by 
Stamnes and Swanson, we find (contrary to our expectations) that the Stamnes and Swanson 
prescription is still the most accurate because it avoids round-off errors due to matrix 
multiplications needed to symmetrize the matrix in the two other procedures. We also find 
that, when the QR algorithm (used to solve the asymmetric eigenvalue problem in the Stamnes 
and Swanson procedure) is changed to avoid complex arithmetic, the speed becomes 
comparable to that of the two other procedures based on reduction to symmetric matrices. 

INTRODUCTION 

Several years ago, Stamnes and Swanson’ showed that the system of coupled differential equations 
occurring in the discrete ordinate method pertinent to radiative transfer in plane-parallel media can 
be reduced to a standard algebraic eigenvalue problem. The same eigenvalue problem occurs in 
the matrix operator and the spherical harmonic method. The relationship between the discrete 
ordinate and the matrix operator methods has been discussed by Waterman,* Nakajima and 
Tanaka3 and Stamnes,4 and between the discrete ordinate and the spherical harmonic method by 
Karp et al5 and Stamnes and Swanson.’ 

Because of the special structure of the matrix involved, which is a consequence of the reciprocity 
principle, the eigenvalues occur in positive/negative pairs, and the order of the algebraic eigenvalue 
problem can be reduced by a factor of 2. The reduced matrix, which is real but asymmetric, consists 
of a product of two matrices, which are also real, but asymmetric.’ Since the reduced matrix is 
real but asymmetric, Stamnes and Swanson’ adopted a solver which utilizes the double-QR 
algorithm. This algorithm applies to a general real matrix (which may have complex eigenvalues/ 
eigenvectors) and uses complex arithmetic. 

The fact that the eigenvalues are real, as proven by Kuscer and Vidav,6 suggests that it is possible 
to transform the algebraic eigenvalue problem into one involving symmetric matrices. Recently, 
Nakajima and Tanaka3 showed that it is, in fact, possible to introduce a scaling transformation 
which transforms the matrix for the reduced problem in Stamnes and Swanson’ into a product of 
two real, symmetric matrices, one of which is positive definite. 

Nakajima and Tanaka3 showed that the eigenvalues and eigenvectors of the transformed reduced 
matrix can be obtained by solving two symmetric eigenvalue problems (and thereby avoiding 
complex arithmetic). However, in addition to two symmetric eigenvalue problems, the procedure 
of Nakajima and Tanaka3 also involves five matrix multiplicatiops and one square root of a matrix, 
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which makes their computation susceptible to computer round-off errors. Nakajima and Tanaka3 
erroneously stated that their procedure yields more accurate results than the Stamnes and Swanson 
procedure based on the QR algorithm. This error was due to the use of a faulty QR algorithm 
by Nakajima and Tanaka. 

The purpose of this article is to show that it is possible to obtain eigenvalues and eigenvectors 
of the transformed reduced matrix of Nakajima and Tanaka by a simpler and faster procedure 
which involves the solution of only one symmetric eigenvalue problem, one inversion of a triangular 
matrix and the equivalent of one matrix multiplication. As we shall see, this simplification is 
obtained by utilizing the Cholesky decomposition of the positive definite matrix. In spite of this 
improvement, we find to our surprise that, in single-precision computations, the Stamnes and 
Swanson procedure is more accurate than the Cholesky decomposition procedure and we attribute 
this circumstance to the matrix multiplications needed to symmetrize the matrix in the Nakajima 
and Tanaka procedure and our present procedure based on the Cholesky decomposition. 

MATRIX FORMULATION 

We start with the discrete ordinate approximation to the homogeneous version of the radiative 
transfer equation, which may be written in matrix form as’ 

where the notation is as follows:‘,3 

U= {~“‘(z, *pi)), i = 1,. . .,N, 

a =M-‘(C+W-I), 

/? =M-‘C-W, 

M= (pdjj>, i,j = 1,. . ., N, 

Pa) 

(2W 

(24 

(24 

W = (wi6,j), i,j = 1,. . . , N, (24 

c+ = (C”(Pi, Pj)} = {c”(-p,, p,)}, i, j = 1,. . . , N, cw 

C- = (CmC-Pi, /Jj>} = (Cm(pi, -pj>>, i, j = 1, . . . , N. c&9 
The pi and wi are the quadrature points and weights, and u~(z, p,) is the mth Fourier component 
of the intensity at optical depth z and direction pi. C”(z, pi, p,) contains information about the 
single scattering albedo and the phase function and is one-half for conservative, isotropic scattering 
[cf. Eq. (5) of Ref. 11. We refer the reader to Stamnes and Swanson, Nakajima and Tanaka and 
Stamnes for further details. 

The reduction of the order proceeds as follows (cf. Ref. 1). We rewrite Eq. (1) as 

d(u+ + u-) 

dz 
= -(a - j?)(u+ - u-), 

d(u+ - u-) 

dz 
= -(a + j?)(u+ + u-), 

and, by combining Eqs. (3a) and (3b), we obtain 

d2’u~T~ ‘-) = (a - /?)(a + jJ)(u+ + u-) 

and 

d*(u+ - u-) 

dr* 
= (a + fl)(a - j?)(u+ -u-), 

(34 

(W 

(44 

W) 



Computation of eigenvalues and eigenvectors 417 

which completes the reduction of the order. The matrices (a - /?) and (a + /?) are both asymmetric 
and their products (Eqs. (4a) and (4b)] are both asymmetric. Stamnes and Swanson’ solved 
Eq. (4a) and thus obtained the eigenvectors (u+ + u-). They then used Eq. (3b) to determine 

(U+ -u-). 

TRANSFORMATION TO SYMMETRIC MATRICES 

We now follow the notation and presentation of Nakajima and Tanaka3 closely and start by 
rewriting Eqs. (3a) and (3b) as 

z =(-a +fl)+‘=M-‘GTW4T, (54 

where 

p=u+ *II-, w 

G’ = W-’ -(C+ &- C-). PC) 

We note that, while (-a + p) are asymmetric matrices, the G* are symmetric. By introducing the 
scaling 

into Eq. (5a), we find 

d@ 

dz 
= X’$‘, w 

where 

are symmetric matrices since G* are symmetric. 
Elimination of 4 - and t#~ + from Eq. (6b) yields 

d*$+ --=x-x+$+ 
dz* 

and 

d*& 
--=x+x-&, 
dz* 

(W 

V-J) 

respectively. 
We note that, except for the scaling [Eq. (6a)], Eqs. (7a) and (7b) are identical to Eqs. (4a) and 

(4b), respectively, and that the virtue of the scaling is to make X+ and X- symmetric. We need 
to solve only one of the eigenvalue problems (7a) or (7b) since they are coupled through Eq. (6b). 
Nakajima and Tanaka obtained the eigenvalues and eigenvectors of X-X+ [Eq. (7a)] by a pro- 
cedure involving two symmetric eigenvalue problems, five matrix multiplications and one square 
root of a matrix [Eqs. (17)-(23) in their paper]. Next, we present a simpler and computationally 
faster procedure to compute the eigenvalues and eigenvectors of X+X- [Eq. (7b)]. 

REDUCTION TO ONE SYMMETRIC EIGENVALUE PROBLEM 

As was noted by Nakajima and Tanaka3 the matrix X- is positive definite and we shall take 
advantage of this fact in the following analysis. 

To obtain eigenvalues and eigenvectors of Eq. (7b), i.e., 

(X+X-)Q = Qit, it = (if6,) (84 

we use the Cholesky decomposition to write 

X- = RTR, cw 
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where the superscript-T denotes transpose and R is an upper triangular matrix with positive 
diagonal elements.’ Substitution of Eq. (8b) into Eq. (8a) yields 

(X+RTR)Q = Q2 (84 

and 

(RX+ RT)RQ = RQ2. 

Thus, we see that by solving the symmetric eigenvalue problem 

(RX+ RT)V = VZ, 

the eigenvalues and eigenvectors of Eq. (8a) are 2: and 

Q = R-IV. 

(84 

(94 

Pb) 
This approach involves only the solution of one symmetric eigenvalue problem [Eq. (9a)], one 

decomposition and one inversion of a triangular matrix [Eq. (9b)]. 

DISCUSSION AND CONCLUSION 

The advantage of solving the algebraic eigenvalue of one asymmetric matrix (4a,b) (which 
involves complex arithmetic) is that only one matrix multiplication is necessary. The trans- 
formation to symmetric matrices X and subsequent solution procedures introduce matrix oper- 
ations in which the effect of rounding error in the numerical computation may become significant. 
However, the Cholesky decomposition of the positive definite matrix X- is extremely stable and 
the symmetric matrix S = RX+ RT can be obtained in 2/3 N3 multiplications (N is the order of the 
matrix) by taking proper advantage of the symmetry. This includes the Cholesky decomposition 
(see Ref. 7, p. 338). To keep the effect of rounding errors at a low level, S is obtained by properly 
accumulating the inner products of RX+ RT. Because X+ is symmetric and R is upper triangular, 
the upper triangular part of S = (S,; i = 1, . . . , N, j = i, . . . , N} can be obtained as follows: 

s, = 5 5 rrkXklr$, 
k=i I=1 

where 

and the lower triangular part of S follows by symmetry. 
We have compared our new procedure based on the Cholesky decomposition [Eqs. (8) and (9)] 

with Nakajima and Tanaka [Eqs. (17)--(23) in their paper] and Stamnes and Swanson. These 
comparative runs were made on a VAX computer in Alaska and a SX-1 super computer of NEC 
in Japan. Single- and double-precision runs were made on both machines which are 32-bits/single 
64-bits/double computers and the results were compared with those of the doubling method,* 
which was executed in double precision for 32 streams to get high accuracy. The outcome of these 
comparisons may be summarized as follows: (1) all three methods work well when executed in 
double precision. (2) In single precision, the Stamnes and Swanson procedure is more accurate than 
the Cholesky procedure which, in turn, is slightly more accurate than the Nakajima and Tanaka 
procedure. (3) The Cholesky procedure is slightly faster than Nakajima and Tanaka, which is 
slightly faster than Stamnes and Swanson. Based on these findings, we decided to look into the 
possibility of speeding up the Stamnes and Swanson procedure, since it is the most accurate. 
A close examination then revealed that by eliminating complex arithmetic in the QR-algorithm, 
the speed of this procedure became comparable to that of the Cholesky procedure. We have also 
found that, on 32-bit machines, very accurate results are obtained (3-4 digits for fluxes and 2-3 
digits for intensities) in single precision if the eigenvalues are computed in double precision. Thus, 
on 64-bit machines, single precision will yield all of the accuracy needed for most practical 
applications. Our conclusion is therefore that the Stamnes-Swanson prescription to compute 
eigenvalues and eigenvectors is still the best known procedure available. Finally, we point out that 
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the apparent shortcomings of this procedure found by Nakajima and Tanaka3 (cf. their Fig. 3) are 
due to their use of a faulty double QR-algorithm. 
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